Effects of cholesteryl ester transfer protein inhibition on high-density lipoprotein subspecies, apolipoprotein A-I metabolism, and fecal sterol excretion.

نویسندگان

  • Margaret E Brousseau
  • Margaret R Diffenderfer
  • John S Millar
  • Chorthip Nartsupha
  • Bela F Asztalos
  • Francine K Welty
  • Megan L Wolfe
  • Mats Rudling
  • Ingemar Björkhem
  • Bo Angelin
  • James P Mancuso
  • Andres G Digenio
  • Daniel J Rader
  • Ernst J Schaefer
چکیده

OBJECTIVE Pharmacological inhibition of the cholesteryl ester transfer protein (CETP) in humans increases high-density lipoprotein (HDL) cholesterol (HDL-C) levels; however, its effects on apolipoprotein A-I (apoA-I) containing HDL subspecies, apoA-I turnover, and markers of reverse cholesterol transport are unknown. The present study was designed to address these issues. METHODS AND RESULTS Nineteen subjects, 9 of whom were taking 20 mg of atorvastatin for hypercholesterolemia, received placebo for 4 weeks, followed by the CETP inhibitor torcetrapib (120 mg QD) for 4 weeks. In 6 subjects from the nonatorvastatin cohort, the everyday regimen was followed by a 4-week period of torcetrapib (120 mg BID). At the end of each phase, subjects underwent a primed-constant infusion of (5,5,5-2H3)-L-leucine to determine the kinetics of HDL apoA-I. The lipid data in this study have been reported previously. Relative to placebo, 120 mg daily torcetrapib increased the amount of apoA-I in alpha1-migrating HDL in the atorvastatin (136%; P<0.001) and nonatorvastatin (153%; P<0.01) cohorts, whereas an increase of 382% (P<0.01) was observed in the 120 mg twice daily group. HDL apoA-I pool size increased by 8+/-15% in the atorvastatin cohort (P=0.16) and by 16+/-7% (P<0.0001) and 34+/-8% (P<0.0001) in the nonatorvastatin 120 mg QD and BID cohorts, respectively. These changes were attributable to reductions in HDL apoA-I fractional catabolic rate (FCR), with torcetrapib reducing HDL apoA-I FCR by 7% (P=0.10) in the atorvastatin cohort, by 8% (P<0.001) in the nonatorvastatin 120 mg QD cohort, and by 21% (P<0.01) in the nonatorvastatin 120 mg BID cohort. Torcetrapib did not affect HDL apoA-I production rate. In addition, torcetrapib did not significantly change serum markers of cholesterol or bile acid synthesis or fecal sterol excretion. CONCLUSIONS These data indicate that partial inhibition of CETP via torcetrapib in patients with low HDL-C: (1) normalizes apoA-I levels within alpha1-migrating HDL, (2) increases plasma concentrations of HDL apoA-I by delaying apoA-I catabolism, and (3) does not significantly influence fecal sterol excretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport.

BACKGROUND Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters from high-density lipoproteins to apolipoprotein (apo) B-containing lipoproteins and in humans plays an important role in lipoprotein metabolism. However, the role that CETP plays in mediation of reverse cholesterol transport (RCT) remains unclear. We used a validated in vivo assay of macrophage RCT to test the ef...

متن کامل

Inhibition of cholesteryl ester transfer protein in normocholesterolemic and hypercholesterolemic hamsters: effects on HDL subspecies, quantity, and apolipoprotein distribution.

The effects of cholesteryl ester transfer protein (CETP) inhibition on the serum lipoprotein profile in both normocholesterolemic and hypercholesterolemic hamsters has been determined following subcutaneous injection of 12.5 mg/kg of the CETP neutralizing monoclonal antibody, TP2. Inhibition of CETP activity was greater than 60% and resulted in a 30-40% increase in high density lipoprotein (HDL...

متن کامل

Novel therapies focused on the high-density lipoprotein particle.

Cardiovascular disease (CVD) remains a major burden for morbidity and mortality in the general population, despite current efficacious low-density lipoprotein-cholesterol-lowering therapies. Consequently, novel therapies are required to reduce this residual risk. Prospective epidemiological studies have shown that high-density lipoprotein-cholesterol (HDL-C) levels are inversely correlated with...

متن کامل

The Role of Omega-3 Fatty Acids in Reverse Cholesterol Transport: A Review

The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on cardiovascular disease have been studied extensively. However, it remains unclear to what extent n-3 PUFAs may impact Reverse Cholesterol Transport (RCT). RCT describes a mechanism by which excess cholesterol from peripheral tissues is transported to the liver for hepatobiliary excretion, thereby inhibiting foam cell f...

متن کامل

تأثیر پلی‌مرفیسم I405V ژن CETP بر پاسخ لیپیدی به تغییر ترکیب اسیدهای چرب رژیم غذایی

Background and objectives: Atherosclerosis results from a complex interaction between genetic and environmental factors. Free cholesterol efflux from peripheral tissues and transferring to the liver for excretion from bile which is known as reverse cholesterol transfer (RCT) plays a central role in protection against atherosclerosis. HDL and cholesteryl ester transfer protein (CETP) are the maj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 25 5  شماره 

صفحات  -

تاریخ انتشار 2005